Impact of Thermal Power Pollution on Livestock: A Multivariate Analytical Interpretation from Confronting Social Ecology

S. K. Acharya, Sk Wasaful Quader, Arindam Ghosh, Monirul Haque, Kabita Mondal and Amitava Biswas

Department of Agricultural Extension, Bidhan Chandra Krishi Vigyanalaya, Mohanpur, Nadia, West Bengal, Pin-741252, India.
Department of Agricultural Extension, U.B.K.V, Pundibari, Coochbehar, India.

Authors’ contributions

This work was carried out in collaboration with all authors. Author SWQ wrote the first draft of the manuscript, collected data and done statistical analysis. Authors AG, MH and KM helped in collection of data and preparation of manuscript. Authors AB and SKA helped in interpretation and supervised the work. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JEAI/2020/v42i930583

ABSTRACT

Thermal power stations are now considered as the foremost global concern as these are responsible to produce detrimental effects on the environment. Environmental Impact Assessment (EIA) is a process of evaluating the likely environmental impact so proposed project or development, taking into account inter-related socio-economic, cultural and human-health impacts, both beneficial and adverse. In this study, the perception of certain(60) farmers in 5 villages of Kolaghat block of Purba Medinipur, West Bengal, India are recorded and analyzed on the basis of their knowledge and views about thermal power, environment and about their individual enterprises. There are 10 independent variables-ages (x1), education (x2), family Member (x3), income (x4), homestead land...
contributes 63.4% of the total installed capacity. Coal remains the major fuel for meeting future energy needs. Coal will continue to be the dominant fuel in the world’s electricity generation till 2012 even with the development of feasible hydro–potential and non-conventional sources of energy in India. Coal will continue to remain the major fuel for meeting future electricity demand. Thermal generation contributes 63.4% of the total installed capacity. The total generation installed capacity of India is 115544.8 MW and the thermal power contributes 80187.5MW.

Keywords: Environment; coal based thermal power plants; Kolaghat thermal power station; Environmental Impact Assessment (EIA); social ecology; perception analysis; human health; betel vine; livestock health.

1. INTRODUCTION

The livestock population is immense important for protecting the ecological resilience of a soul regime. We depend on livestock not only to sustain human health, at the same time it helps to make agriculture productive and resilient. Due to thermal power emission, the livestock health is fastly deteriorating and with no exception to surrounding ecosystems of Kolaghat thermal power station. While impact of fly ash emission from thermal power station on human health has got plenty of references, such studies on the effect on livestock health is not much common. Thermal power stations are now considered as the foremost global concern as these are responsible to produce detrimental effect on the environment. [1]. Humans were in the past more physically and psychologically connected to nature than people living in industrialized nations today. Environmental pollution is now extensively discussed phenomenon and it is often stated that pollution becomes severe since the onset of the industrial revolution; mainly due to the combustion of fossil fuels used for the generation of energy and transportation. Energy is the most important input to sustain and support productivity as well as ecological balance [2]. Coal power refers to electric power produced from direct combustion of coal or combustion following gasification. Coal supplies the majority of the world’s electricity due to its low relative cost and the global distribution of coal reserves. Fossil fuels such as coal are concentrated forms of energy and produce cheap thermal energy. Coal has been identified as main fuel for power generation till 2012 even with the development of feasible hydro – potential and non – conventional sources of energy in India. Coal will continue to remain the major fuel for meeting future electricity demand. Thermal generation contributes 63.4% of the total installed capacity. The total generation installed capacity of India is

(X₀), total Land (X₁), land under Boroj (X₂), input cost (X₃), and livestock number (X₄), distance of villages from Kolaghath Thermal Power Station (X₅), and 1 dependable variables- 1) perceived impacts of Kolaghath Thermal Power Station on livestock (Y₁). It has been found that toxic elements and fly ash from Kolaghath Thermal Power Station have several consequences upon local environment, human, agriculture and livestock. It has also revealed that Kolaghath Thermal Power Station hampers the social ecology of the local areas. The study has further suggested several recommendations to cope with adverse environmental and ecological condition.

Soil of the areas surrounding Kolaghath thermal power plant is adversely affected by fly ash which contains heavy metals in different ranges of concentration which have been found to increase significantly through time but decrease with distance [3]. Betel vine an important cash crop is such a resource. Betel is a perennial tropical plant. Betel leaves help in digestion and its extract has some medicinal application. So the leaves are very commonly chewed by the people in India. It is an important cash crop of Purba Medinipur District of West Bengal, having good demand not only in India but abroad also. Purba Medinipur district ranks first in producing betel leaves in West Bengal. Tamluk subdivision of this district is famous for betel cultivation not only for quantity but also for quality. Among seven blocks of this subdivision Saheed Matangini holds the first position in terms of area and productivity of betel plant in the Medinipur District in the 1970s and 1980s (Principal Agricultural Office, Purba Medinipur). According to the local farmers the declining trend was started in the 1990s after the development of coal based power plant (Kolaghath Thermal Power Plant) in this locality and later on aggravated by some other factors [4]. Income from cash crops consists of betel vine, Rose, Jasmine, Tube rose have also been vulnerable to pollution created by fly ash [5]. So in this paper an attempt has been made to find the present status of betel cultivation in this block and to find out the probable causes for declining trend of betel cultivation. Due to its high energy

Acharya et al.; JEAI, 42(9): 16-24, 2020; Article no.JEAI.61414

Keywords: Environment; coal based thermal power plants; Kolaghat thermal power station; Environmental Impact Assessment (EIA); social ecology; perception analysis; human health; betel vine; livestock health.
generation potential, coal is widely used in power generation in different countries. Although, the presence of carbon, hydrogen and sulfur in coal facilitates the energy generation in coal combustion, some pollutants including carbon dioxide, Sulphur dioxide, Nitrogen dioxide, particulate matter (PM) and heavy metals are accumulated in air and water and lead to severe environmental and health impacts as a result of leaching, volatilization, melting, decomposition, oxidation, hydration and other chemical reactions. In addition, fly ash, in both wet and dry forms, is mobilized and induces severe impacts including bone deformities and kidney dysfunction, particularly with exposure of radio nuclides [6]. The emission of these gases has been correlated with many health problems directly and indirectly, including skin, cardiovascular, brain, blood and lung diseases, and different cancers. The CO₂ emission from coal combustion, during power generation, also leads to the interaction of CO₂ with particulate matter (PM 2.5), which thereby changes the air quality and leads to increased asthma attacks and other respiratory and cardiovascular diseases with underlying poor life status. In haling particulate matters may cause some dangerous diseases, including chronic obstructive pulmonary disease (COPD) and lung cancer [7].

Cattle grazing nearby coal-fired power stations are exposed to fly ash. Fly ash consists of finely divided particles with size ranging from 5 to 120 μm. It is composed of oxides of iron, silicon, aluminum, magnesium, calcium, sodium, and potassium. Along with oxide, fly ash also contains toxic elements such as antimony, arsenic, beryllium, cadmium, fluorine, lead, mercury, selenium, thallium, and vanadium. These pollutants are dispersed and transported throughout the region and reach the population through numerous exposure pathways like inhalation, ingestion, and dermal absorption [8]. The majority of the bovine lungs derived from mining and industrial areas was dirty pink in color and mottled with black pigment [9]. Airborne pollution of pasture with heavy metals cause disorders in cattle characterized by poor condition, chronic diarrhea, reduced growth and weight, bilateral per orbital alopecia, multifocal alopecia, excessive lacrimation, and declined fertility [10]. A high concentration of mercury in the soil is observed to be translocated top land subsequently to the grazing cattle. In cattle, absorb mercury is distributed throughout the body and is stored mainly in the liver and kidneys [11]. Human beings are largely dependent upon the animal products such as milk. Therefore, there might be a possibility of high risk involved in consuming the animal products from the cattle exposed to pollutants [12]. In this investigation, domestic animals reared proximity to Kolaghat thermal power plant were studied to analyze the pollution related problem and there indirect effect on the human population.

A social ecology, as a holistic vision, seeks to relate all phenomena to the larger direction of evolution and emergence in the universe as a whole. In its deepest and most authentic sense, a specifically social ecology is the awakening earth community reflecting on itself, uncovering its history, exploring its present predicament, and contemplating its future [13]. The negative impact of Kolaghat Thermal Power Station on betel vine ecology is quite profound either on its yield and quality or on economic condition of their growers. Vine ecology is a complex whole, with several actors functioning simultaneously.

Environmental Impact Assessment (EIA) is a process of evaluating the likely environmental impacts of a proposed project or development, taking into account inter-related socio-economic, cultural and human-health impacts, both beneficial and adverse. Environmental Impact Assessment systematically examines both beneficial and adverse consequences of the project and ensures that these effects are taken into account during project design. Environmental Impact Assessment (EIA) is a mandatory decision-support tool in every country of the world, developed 50 years ago to ensure the consideration of the environmental consequences of development decisions prior to approval decisions being made. Specifically, the aim of developing an EIA system was to make decision-making affecting the environment more accountable [14]. It helps to identify possible environmental effects of the proposed project, proposes measures to mitigate adverse effects and predicts whether there will be significant adverse environmental effects, even after the mitigation is implemented. By considering the environmental effects of the project and their mitigation early in the project planning cycle, environmental assessment has many benefits, such as protection of environment, optimum utilization of resources and saving of time and cost of the project. Properly conducted Environmental Impact Assessment also lessens conflicts by promoting community participation, informing decision makers, and helping lay the base for environmentally sound projects. Benefits
of integrating Environmental Impact Assessment have been observed in all stages of a project, from exploration and planning, through construction, operations, decommissioning, and beyond site closure. Kolaghat Thermal Power Station has massive impacts on surrounding areas and in overall environment as well. It affects Human health, Plant health, Animal health and productivity significantly. Fast developing economy like India, measurement of green house gases from the thermal power plants are very much essential in order to find out their values so that necessary policies of reduction of such gases can be formulated [15].

Though electricity has become a necessary service but conventional sources of electricity are jeopardizing natural habitats, flora and fauna, soil and air. Perception, like specific variable of the behavior, is the process by which someone receives, selects, organizes and interprets stimuli from the environment, giving them a meaning. In psychology, perception is a more complex psychological behavior that relates to a particular frame of reference developed in our personal and social boundaries. Meanwhile, there is an urgent need to reconcile development activities with that of environmental concerns for good. Perception Analysis by farmers is one of those several ideas and initiatives taken by researchers and planners to attain above mentioned goal. In this study, the perception of certain (60) farmers are recorded and analyzed on the basis of their knowledge and views about thermal power, environment and about their individual enterprises.

The specific objectives of this study were to elicit the general status of pollution level and perceived impacts on betel vine, cattle and human health. To estimate the impacts level in terms of a set of socio-economic and ecological variables. To estimate the system interactions and estimated outcome based on the selected variables. Based on empirical studies, suggest the remedial and mitigation measures for maintaining sustainability.

2. RESEARCH METHODOLOGY

2.1 Research Locale

The Kolaghat Thermal Power Station (KTPS), located at Mecheda in Midnapur District, West Bengal is one of the largest thermal power stations in eastern India. Combustion of coal in the Kolaghat Thermal Power Station generates large volumes of fly ash that are disposed-off in vast areas of land adjoining the power station. This area has been selected as the research locale.

2.2 Sampling Design

Snowballing and Simple Random Sampling techniques are followed to select 60 respondents having livestock enterprise and dwelling in the adjoining areas of thermal power station.

2.3 Pilot Study

A Pilot study is conducted in the selected villages before the starting of actual data collection. An informal discussion was carried out with some farmers, local leaders and extension agents. A brief idea regarding their socialization process, ideas, knowledge, adoption and rejection behavior, discontinuance etc were obtained for construction of schedule.

2.4 Variables and their Management

It is important for a researcher to point out the behavior of respondents and for this a deep understanding and knowledge of variables are prerequisite. Socio-personal, Agro-Economic, Socio-Psychological and communication variables are such types of variables, which have great impacts on the behavior of the people. Therefore, the selected variables have been operationalized and measured in following manner-

2.4.1 Age (x_1)

In all societies, age is one of the most important determinants of social status and social role of the individual. In the present study, the number of years rounded in the nearest whole number the responded lived since birth at the time of interview, was taken as a measure of age of the farmer.

2.4.2 Education(x_2)

Education may be operationalized as the amount of formal schooling attained/literacy acquired by the responded at the time of interview. Education is instrumental in building personality structure and helps in changing one's behavior in social life.

2.4.3 Family member(x_3)

It represents as the number of members in the individual farmer’s family.
2.4.4 Income (x_4)

It shows the total family income an individual farmer in a year (including all sources).

2.4.5 Homestead land (x_5)

It shows the researcher the size of the land occupied by the household of individual farmer.

2.4.6 Total land (x_6)

It represents the size of lands that are under cultivation. It is either owned or leased land.

2.4.7 Land under boroj (x_7)

It is the total area of land which is brought under betel cultivation.

2.4.8 Input cost (x_8)

It is the amount of expenses that is required for crop production as input materials. It includes cost of planting material, manures and fertilizers, plant protection equipment, marketing and transport cost and labor wages etc.

2.4.9 Livestock number (x_9)

It is the total number of livestock, an individual farmer poses. It includes Cattles, Poultry birds, Swine etc.

2.4.10 Distance of villages from thermal plant (x_{10})

It represents the distance of each selected village from Kolaghat Thermal Power Station. This variable is taken under consideration to understand if distance affects the impacts of Kolaghat Thermal Power Station.

2.4.11 Perceived impacts of Kolaghat Thermal Power Station on livestock (y_3)

The impacts of thermal power on animals and birds are well known. In this study, the negative impacts of Kolaghat Thermal Power Station are studied with the help of 10 scale matrix ranking.

Pre testing is also done to understand if the set questionnaire is competent enough to make the respondents answer the questions properly and objectively. After pre testing is done, the respondents who are being interviewed are excluded in final sample selection.

2.6 Method of Final or Field Data Collection

The respondents are personally interviewed. To get satisfactory answer local dialect, Bengali is used. The recent situation of COVID-19 pandemic within India hampers the conducted study as well as the plan of work. In spite of that the researcher tried his best to make this study successful.

3. RESULTS AND DISCUSSION

3.1 Coefficient of Correlation (R):

Perceived Impacts of Kolaghat Thermal Power Station on Livestock (Y_3) Vs. 10 Independent Variable

The result reveals that those who have relatively higher education, they are responding to the situation better, which is well justifiable. In this area a good number of educated people, professors, doctors, School teachers reside and a good number of school, colleges, organizations, science clubs are also there. Most importantly local farmers are more conscious. That's why education (x_2) has got profound significance. The result has also revealed that the impacts of fly ashes generated by Kolaghat Thermal Power Station have got prominent impacts on the productivity of milk by cattle. Goats and poultry birds are also suffering heavily by fly ash produced by Kolaghat Thermal Power Station. As more number of livestock is reared in proximity to Kolaghat Thermal Power Station, more the total impacts will be upon them. These negative impacts have reflected upon their general productivity level. As in cattle, the milk productivity and in poultry the egg laying capacity has drastically reduced. The quality of milk, poultry meat is also being affected by Kolaghat Thermal Power Station. Alongside human health, the livestock productivity and health is also being perceived negatively impacted by Kolaghat Thermal Power Station. Several toxic substances have been found in those fly ashes and among them ‘Hg’ (mercury) is the most toxic to cattle. It accumulates on their liver, and kidney. And it has been found that water contaminated with
mercury has more impacts on their bodies than any other sources. Fodder exposed to this fly ash has also a catalytic effect upon biochemical properties of cattle.

3.2 Multiple Regression Analysis: Perceived Impacts of Kolaghat Thermal Power Station on Livestock (Y_3) Vs. 10 Causal Variables (X_1-X_{10})

The full model regression analysis shows that, with the combination of 10 causal variables (x_1-x_{10}),59.50 per cent of variant involved in the consequent variable perceived impacts of KTPS on livestock (y_3). This is a great proportion of variant which has been explained with 10 causal variables (x_1-x_{10}).

3.3 Stepwise Regression Analysis: Perceived Impacts of Kolaghat Thermal Power Station on Livestock (Y_3) Vs. 10 Causal Variables (X_1-X_{10})

It has been found that, 2 causal variables viz. family member (x_3) and livestock number (x_9) have been retained at the last step and has contributed 50.90 per cent of the total variable explained. Which imply that, these 2 variables are functionally significant. The result helped us to reveal that, respondents who have larger family size are more inclined to rear more number of livestock. Betel cultivation alongside livestock rearing gives the extra economic gain. In here, Family labor has a crucial role in managing livestock and women, particularly involve more in livestock rearing than their male counterparts.

Fig. 1. Coefficient of Correlation(r): perceived impact of KTPS on livestock (y_2) vs. 10 independent variable

Table 1. Multiple Regression Analysis: perceived impacts of Kolaghat Thermal Power Station on livestock (y_3) Vs. 10 Causal Variables (x_1-x_{10})

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Variables</th>
<th>Reg. Coef. B</th>
<th>S.E. B</th>
<th>Beta</th>
<th>t Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>age (x_1)</td>
<td>.012</td>
<td>.013</td>
<td>.093</td>
<td>.907</td>
</tr>
<tr>
<td>2</td>
<td>education (x_2)</td>
<td>.092</td>
<td>.052</td>
<td>.188</td>
<td>1.786</td>
</tr>
<tr>
<td>3</td>
<td>family member (x_3)</td>
<td>-.176</td>
<td>.117</td>
<td>-.197</td>
<td>-1.511</td>
</tr>
<tr>
<td>4</td>
<td>income (x_4)</td>
<td>.000</td>
<td>.000</td>
<td>.078</td>
<td>.750</td>
</tr>
<tr>
<td>5</td>
<td>homestead land (x_5)</td>
<td>.295</td>
<td>1.750</td>
<td>.017</td>
<td>.168</td>
</tr>
<tr>
<td>6</td>
<td>total land (x_6)</td>
<td>.151</td>
<td>.153</td>
<td>.179</td>
<td>.984</td>
</tr>
<tr>
<td>7</td>
<td>land under boroj (x_7)</td>
<td>-.247</td>
<td>.167</td>
<td>-.190</td>
<td>-1.483</td>
</tr>
<tr>
<td>8</td>
<td>input cost (x_8)</td>
<td>.000</td>
<td>.000</td>
<td>-.319</td>
<td>-1.753</td>
</tr>
<tr>
<td>9</td>
<td>livestock number (x_9)</td>
<td>.471</td>
<td>.074</td>
<td>.627</td>
<td>6.411</td>
</tr>
<tr>
<td>10</td>
<td>Distance of villages from thermal plant (x_{10})</td>
<td>-.039</td>
<td>.058</td>
<td>-.091</td>
<td>-.670</td>
</tr>
</tbody>
</table>

R square: 59.50 per cent
The standard error of the estimate: 1.04327
As, his practice utilizes more women labor, efficient family labor utilization occurs. So a general tendency here is to raise more number of livestock, when the family is relatively larger. A positive relation between family member (x_3) and livestock number (x_9) has been seen here.

3.4 Path Analysis: Decomposition of Total Effect into Direct, Indirect and Residual Effect; Perceived Impacts of Kolaghat Thermal Power Station on Livestock (y_3) Vs. 10 Exogenous Variables(X_1-X_{10})

It has been found that age(x_1) recorded here has the highest direct and indirect effect. It has also been found that livestock number (x_9) has second highest indirect effect. Age shapes experiences, in here age denotes so. Experiences in betel vine cultivation as well as in livestock rearing contributed significantly both directly and indirectly. And importantly, as evinced, variable livestock number(x_9) has got the second highest indirect effect on impact on livestock. This has already been discussed that more number of livestock one rears, more would be the detrimental effect upon them. The residual effect being 0.406 means it is to conclude that 40.60 per cent of variant in perceived impacts of Kolaghat Thermal Power Station on livestock (y_3) can’t be explained with the combination of 10 exogenous variables(X_1-X_{10}).
4. CONCLUSION

The whole planet is facing ecological disaster. According to some Environmental scientists, the covid-19 pandemic can be correlated with these ecological disaster and environmental degradation. The worst recipients of pollutants in any form on human health, agriculture and livestock health, brings serious long span persistent effect upon them. Since the establishment of Kolaghat Thermal Power Station (1984), it has been generating electricity which is appreciated at the national level and at the same time, it went on polluting the environment and local ecosystems. From this empirical study, several toxic substances have been found in those fly ashes and among them ‘Hg’ (mercury) is the most toxic to cattle. It accumulates on their liver, and kidney. And it has been found that water contaminated with mercury has more impacts on their bodies than any other sources. Fodder exposed to this fly ash has also a catalytic effect upon biochemical properties of cattle. The surrounding water sources are contaminated, the agricultural products are affected and also the livestock health and productivity have also been negatively impacted. This study reveals that some selected socio-ecological and economic factor have caused the ecological fallout.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

ACKNOWLEDGEMENT

My deepest sense of respect and heartfelt gratitude to my guide Prof.S.K.Acharya, Department of Agricultural Extension, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia for suggesting the topic, ceaseless and sagacious guidance, sustained interest, valuable suggestions, ever encouraging inspiration and constructive criticisms during the course of investigation and also during the preparation of the manuscript. I express my profound gratitude to Prof. Amitava Biswas, Department of Agricultural Extension, BCKV and member of my advisory committee for his advice, supervision, and crucial contribution, which made him a backbone of my work. Thanks to my Senior Mr.Arindam Ghosh, Mr. Manirul Haque PhD research scholar, Department of Agricultural Extension, B.C.K.V for their support and contribution during the preparation of manuscript.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

7. Sepulveda A, Schlup M, Renaud FG, Streicher M, Kuehr R, Hagelüken C, Gerecke AC. A review of the environmental fate and effects of hazardous substances released from...

