Influence of Irrigation Depths on the Growth of Chrysanthemum, Cultivated in Pots, in a Greenhouse in the Northwest Region of Espírito Santo

Robson Prucoli Posse¹*, Gabriel Fornaciari¹, Edinei José Armani Borghi¹, Francielly Valani¹, Sophia Machado Ferreira da Silva¹, Evandro Chaves de Oliveira¹ and Geilson Silva Costa¹

¹Federal Institute of Espírito Santo – Campus Itapina, Highway BR-259, Km 70, Countryside, Post Office Box 256, CEP: 29709-910, Colatina, Espírito Santo, Brazil.

Authors’ contributions

This work was carried out in collaboration between all authors. Author RPP designed the study, conducted the experiment in the field with authors GF, EJAB, FV, SMFS and ECO managed the writing of the manuscript. Authors RPP and GF managed the analyses of study. Authors RPP and GF performed the statistical analysis. Authors GSC and RPP performed translation of the manuscript. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JEAI/2019/v31i230069
Editor(s):
(1) Dr. Mario Lettieri Teixeira, Professor, Federal Catarinense Institute – Campus Concordia, Brasil.
Reviewers:
(1) Faloye, Oluwaseun Temitope, Federal University of Technology, Nigeria.
(2) Husam Al-Najar, The Islamic university of Gaza, Palestine.
(3) Fernado F. Patti, University José do Rosário Vellano, Brazil.
Complete Peer review History: http://www.sdiarticle3.com/review-history/46531

Received 11 November 2018
Accepted 25 January 2019
Published 27 February 2019

ABSTRACT

Chrysanthemum is one of the most important plants in the national and international market of ornamental plants since it has relevant commercial value and presents short cycle and extensive diversity of inflorescences and colors. The present work aimed to evaluate the productive performance of the Puritan cultivar grown in pots under different irrigation depths, in greenhouse conditions in the northwest region of Espírito Santo. The experiment was set up in a completely randomized design with 6 treatments defined by crop evapotranspiration daily replacements (ETc).

*Corresponding author: E-mail: rposse@gmail.com;
of 50% 75%, 100%; 125%, 150% and 175%, with 20 repetitions (pots) each treatment. An auto compensating trickle irrigation system was used, a dripper per pot, discharging 1.3 liters per hour. The evaluations were made at 90 days after planting, when measurements of fresh and dry mass of roots, fresh and dry mass of shoot system, plant height, stem diameter, dry mass of the flowers and flowers diameter were performed. The analysis of variance at 5% probability, showed significant quadratic effect for the dry matter characteristics of the aerial part and height of the plant and significant linear positive effect for the other evaluated characteristics. Under the conditions of the study, daily replacements of 175% of the crop evapotranspiration, which corresponded to daily average depths of 12.25 mm, conferred the best results in all evaluated parameters.

Keywords: Crop evapotranspiration; irrigation management; Dendranthema grandiflora; analysis of growing; floriculture.

1. INTRODUCTION

The worldwide commercialization of flowers is in constant growth and development, making that the floriculture stops characterizing itself like secondary activity in the national market. The flower trade has been growing in recent years.

In Espírito Santo, the production of ornamental plants occupies the area of 163 hectares and is highlighted in seventeen cities. The sector promotes the creating of approximately 8,000 jobs throughout the production chain and mobilizes more than 10 million reais per year. Santa Teresa and Guaçuí are the most notorious cities in this activity [1].

Floriculture is a widely competitive sector, ranging from flower cultivation, cutting, potting or gardening, to the production of seedlings of large ornamental trees, seeds and bulbs [2]. The production cycle of some ornamental plants is short, guaranteeing the rapid turn of capital. The cultivation of flowers requires the use of technological innovations, technical understanding, and a competent system of trade and distribution [3].

Chrysanthemum (Dendranthema grandiflora, Tzevelev) is among the most relevant in the international and Brazilian market of ornamental plants. It is a short-cycle flower that manifests an extensive diversity of colors and types of inflorescences, allowing versatility of use [4].

The cultivation of chrysanthemums is an excellent possibility of revenues that mainly involves family farming, which normally has small properties, insufficient for the production of other crops, but suitable for the use of protected environment [5]. In addition, it is a flower of relevant commercial value that requires photoperiodism and extensive technology for its production. For this reason, their cultivation is usually conducted in protected environments for guaranteeing flowers throughout the year [6].

Despite its agronomic relevance, the technical-scientific knowledge about the management of irrigation for the chrysanthemum growth is still incipient and requires dedication and study to understand its water needs.

In irrigated agriculture, growth and definition of water use efficiency levels are copiously complex and demand interdisciplinary understanding and thinking [7]. On the other hand, the lack of adequate management contributes to the failure of plant development, losses in production and in the quality of the final product. Although it is cultivated in smaller areas, when it is oversized, water consumption of chrysanthemum cultivation can contribute to the reduction of scarce water sources, evidencing the need for accurate scaling [8].

Considering the questions above, this study aimed to evaluate the productive performance of chrysanthemum Puritan cultivar grown in pots under different irrigation depths in greenhouse conditions, in the northwestern region of Espírito Santo, in order to increase and enhance the quality of the flowers produced in this location.

2. MATERIALS AND METHODS

The experiment was conducted in the experimental field of the Federal Institute of Espírito Santo - Campus Itapina, located in Colatina - ES (19°29' South; 40°45' West; 62 m). The climate of the region is Tropical Aw, according to the climatic classification of Köppen [9], characterized by the irregularity of rain and high temperatures.
The experiment was carried out from April 08 to July 06, 2018, in an agricultural greenhouse with an area of 125 m² and 3 meters high, arranged in the east west direction, covered in an arc with transparent plastic of 150 microns and black polypropylene fabric with 50% shading. External weather conditions were by an ONSET® weather station installed next to the experiment and internal conditions recorded by a WatchDog® Model 200 Data Logger.

Through the climatic variations registered by the weather station, the reference evapotranspiration (ETo) was estimated using the Penman-Monteith method FAO-56 Standard [10], Equation 01.

\[
ETo = \frac{0.408\Delta(Rn - G) + \gamma \frac{900}{T + 273} u_2(e_s - e_a)}{\Delta + \gamma(1 + 0.34u_2)} \tag{1}
\]

In which ETo is the daily reference evapotranspiration (mm.d⁻¹); Rn is the daily radiation balance (MJ.m⁻².d⁻¹); G is the daily flow of heat in the soil (MJ.m⁻².d⁻¹); T is the daily average air temperature (°C); \(u_2 \) is the daily average wind speed at 2 m in height (m.s⁻¹); \(e_s \) is the saturation pressure of the daily average water vapor (kPa); \(e_a \) is the daily average water vapor pressure (kPa); \(\Delta \) is the slope of the vapor pressure curve at the point of T (kPa.°C⁻¹) and \(\gamma \) is the psychrometric coefficient (kPa.°C⁻¹).

The cultivar of chrysanthemum used was Puritan, one of the cultivars that presents greater acceptance by the market and greater predominance of planting when in cultures of chrysanthemum in pots, has large inflorescence and white coloration with compound petals. The cuttings were planted, four per pot, equally spaced, into number 13 pots (0.8 dm³) previously filled with the mixture of 70% substrate Tropstrato HT Hortaliças® and 30% of subsoil inert soil.

For the rooting, the pots were arranged side by side, irrigated and covered with transparent polyethylene plastic for 7 days, to maintain the moisture of the pots during the rooting period. On the 14th day after planting, when the plants presented around 5 to 6 developed leaves, the pinch (apex removal) was performed to stimulate the development of the lateral branches.

From planting to the 21st day, for better vegetative growth, the cuttings received 4 hours of artificial lighting a day from 8:00 pm to 0:00 am. For this, 25 W fluorescent lamps were spaced 1.5 x 1.5 m at a height of 2 m.

The treatments started on the 22nd day after planting, when the pots were kept on ceramic bricks, spaced 0.3 m x 0.3 m, to avoid fixation and root contact with the soil and contamination by diseases.

The treatments corresponded to daily replacements of 50% (T1), 75% (T2), 100% (T3), 125% (T4), 150% (T5) and 175% (T6) of the crop evapotranspiration (ETc) assembled in a completely randomized design with 20 repetitions (pots) each treatment.

The crop evapotranspiration (ETc) was determined daily through six selected pots by the drainage lysimeter method (Fig. 1). At the end of the day, the daily water volume (the proper daily irrigation depth was chosen observing the ETc results of the previous day plus 10% to enable a small leaching) was added in each pot and after the drainage was complete, the stored volume, which corresponds to the crop evapotranspiration (ETc), was determined by Equation 2, according to methodology proposed by Medeiros et al. [11]; Medeiros et al. [12]; Oliveira et al. [13]; Silva et al. [14].

\[
ETc = \frac{AV - DV}{A} \tag{2}
\]

where

\[
ETc: \text{crop evapotranspiration (100% (T3), mm d}^{-1}) ;
\]

\[
AV: \text{applied volume (L)} ;
\]

\[
DV: \text{drained volume (L)} ;
\]

\[
A: \text{Pot area (0.01326 m}^2) .
\]

The average ETc, determined at the end of the day, was applied the next day through an auto compensating trickle irrigation system flowing 1.3 liters per hour, with an application efficiency (AE) of 95%, with a dripper per pot. The irrigations were automated and performed with a single daily pulse, in which each sector represented a corresponding treatment. In order to calculate the irrigation time from each irrigation depth, the net volume (V; liters per pot) was considered in relation the pot surface area (0.01326 m²), the treatment level (0.5; 0.75; 1.00; 1.25; 1.50 and 1.75) and the crop evapotranspiration (ETc), according Equation 3:

\[
V (L) = \frac{ETc \times A \times (\text{Treatments Level})}{AE} \tag{3}
\]
Fertilization and other cultural treatments were done according to the recommendations for this crop [4] and growth regulators were not used.

The evaluations were done 90 days after planting (DAP), when the plants had all the inflorescences open. Fresh mass of the root system (FMRS), dry mass of the root system (DMRS), fresh mass of shoot system (FMSS) and dry mass of shoot system (DMSS), plant height (PH), stem diameter (SD), dry mass of the flowers (DMF) and flower diameter (FD) were measured.

The data obtained were submitted to analysis of variance at 5% probability using the R software [15]. When significant, by the F test, regression models were adjusted to demonstrate the influence of the depths applied in each treatment on the development of the chrysanthemum.

3. RESULTS AND DISCUSSION

During the whole crop cycle, the average evapotranspiration in the external environment of the agricultural greenhouse, estimated by the FAO 56 Penman-Monteith model, was 2.70 mm d⁻¹, while the maximum and minimum temperatures recorded were 34.20°C and 13.11°C, respectively, with an average range of 22.9°C (Fig. 2).

The air temperature inside the greenhouse reached a maximum value of 46.4°C, minimum of 14.1°C, with an average value for the growing period of 30.25°C (Fig. 3A). The maximum relative humidity was 91.5% and the minimum was 20.7%, with an average range of 57.5% throughout the period (Fig. 3B).

![Fig. 2. Daily values of reference evapotranspiration (ETO), maximum, average and minimum temperatures (°C) occurred outside the greenhouse during the period of production of the Chrysanthemums](image-url)
According to Petry [16], the ideal temperature range for chrysanthemum cultivation is from 18°C to 25°C. High temperatures, between 27°C and 32°C, according to Whealy et al. [17], may influence the growth of some cultivars, as well as promote delay in induction, unevenness and floral anomalies, depending on the time of exposure to these temperatures and the tolerance presented by the cultivars submitted to them. Even with the average temperature recorded during the crop cycle being elevated and averaging 8.75°C above the ideal, the plants remained apparently unaffected.

The average daily evapotranspiration (ETc) recorded by lysimeters (100% ETc) during this period was 7.00 mm, as can be observed in Table 1. However, an observation is made about the unique frequency of irrigation adopted in this study, for the replacement of the depths that composed the treatments that, according to Pereira et al. [18], studying the consumption of water by the chrysanthemum cultivated in a protected environment, verified that irrigation applied once a day demands the application of larger volumes of water, which causes more percolation when compared to the frequency of divided irrigation behavior attributed in part to the nature of the substrate. This fact, according to the same authors, generated a non-supply of water needs of plants, even with the integral water replacement.

Farias et al. [19], in order to analyze the growth of potted chrysanthemum, Puritan cultivar, irrigated at different water stresses in protected environment, applied daily average depths superior to those found in this work, so that the substrate reached its maximum water retention condition, reaching a maximum total depth during the cultivation cycle of 1,428 mm for the tension of -4 KPa. This shows the low retention capacity of the substrate, thus requiring high water replacement through irrigation so that plants are not subjected to water stress.

Pereira et al. [18], point out the existence of differences in sensitivity to water application among chrysanthemum cultivars. The use of an average amount of crop consumption during irrigation throughout the crop cycle tends to generate water waste in the vegetative phase and, consequently, a possible increase in the occurrence of pests and diseases and unnecessary waste of energy and replacement of leached nutrients and water deficit in the flowering stage, tending to reduce the final quality of the product.

Through the analysis of variance (Table 2), a significant positive linear effect was observed for all the evaluated characteristics and a quadratic effect for dry matter of the aerial part and plant height ($P < 0.05$), in response to the application of the water depths.

For the adjusted quadratic regression model, with coefficient of determination (R^2) of 0.96, the highest estimated response in relation to the height of the chrysanthemum plants would occur in the 191% depth, 22.92 cm high (Fig. 4). This value corresponds to the minimum height of 18 cm and maximum of 30 cm of the chrysanthemum plants, presented by Holambra...
for plants grown in number 13 pots. For the plant height, only the applied depth corresponding to 50% of ETc presented a response lower than the minimum value (18 cm) established by Holambra [20].

The value of the highest height, estimated by the regression, represents a 12.13% increase in plant growth if compared to the 100% ETc replacement and 35.14% replacement of the half of this one (50% ETc), evidencing a stimulus in the growth of the plants with the increase of the irrigation depths. Rêgo et al. [3], also found a quadratic model as the height response of cut chrysanthemum plants, in which the best was obtained in the treatment corresponding to the depth of 100% evaporation in Class "A" tank.

In addition to height and diameter, the increase of the irrigation depths provided a considerable increase in fresh and dry matter of the aerial part of the plants. The fresh matter of the aerial part (Fig. 6A) presented regression with linear behavior and coefficient of determination (R^2) of 0.78, while dry matter of the aerial part (Fig. 6B) showed as best fit a quadratic polynomial with R^2 of 0.86, both significant at 5% probability.

Both FMSS and DMSS presented a positive tendency to development with the increase of the depths applied by the treatments in question. However, it is observed that in the dry mass of the shoot system, this increase tends to a stabilization, reaching its maximum response in the 179.25 mm depth with 7.1 g. Such quadratic behavior of the dry mass in contrast to the linear behavior of the fresh mass plus the behavior of the height and diameter characteristics may be due to a greater contribution of the mass of leaves, more tender and with more water than the branches, in the fresh mass of the shoot system in the upper depths, which would fit the plants grown on these depths as well formed and with good foliar mass.

Table 1. Daily average depth, daily average volume and total depth applied during the production period

<table>
<thead>
<tr>
<th>Treatments (% ETc)</th>
<th>Daily average depth applied (mm d$^{-1}$)</th>
<th>Daily average volume applied (ml d$^{-1}$)</th>
<th>Total depth applied during the cycle (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3.50</td>
<td>46.55</td>
<td>196</td>
</tr>
<tr>
<td>75</td>
<td>5.25</td>
<td>69.83</td>
<td>294</td>
</tr>
<tr>
<td>100</td>
<td>7.00</td>
<td>93.11</td>
<td>392</td>
</tr>
<tr>
<td>125</td>
<td>8.75</td>
<td>116.38</td>
<td>490</td>
</tr>
<tr>
<td>150</td>
<td>10.5</td>
<td>139.66</td>
<td>588</td>
</tr>
<tr>
<td>175</td>
<td>12.25</td>
<td>162.95</td>
<td>686</td>
</tr>
</tbody>
</table>

Table 2. Regression analysis for growth variables of chrysanthemum 'Puritan' in pots, conducted in an agricultural greenhouse. Colatina - ES, 2018

<table>
<thead>
<tr>
<th></th>
<th>FMSS</th>
<th>DMSS</th>
<th>FMRS</th>
<th>DMRS</th>
<th>FD</th>
<th>DMF</th>
<th>SD</th>
<th>PH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear effect</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
</tr>
<tr>
<td>Quadratic effect</td>
<td>0.082*</td>
<td>0.019*</td>
<td>0.549*</td>
<td>0.534*</td>
<td>0.690*</td>
<td>0.323*</td>
<td>0.649*</td>
<td>0.04*</td>
</tr>
<tr>
<td>Cubic effect</td>
<td>0.083*</td>
<td>0.153*</td>
<td>0.451*</td>
<td>0.850*</td>
<td>0.831*</td>
<td>0.602*</td>
<td>0.270*</td>
<td>0.268*</td>
</tr>
<tr>
<td>Regression deviations</td>
<td>0.028*</td>
<td>0.167*</td>
<td>0.154*</td>
<td>0.199*</td>
<td>0.410*</td>
<td>0.736*</td>
<td>0.636*</td>
<td>0.299*</td>
</tr>
<tr>
<td>CV (%)</td>
<td>15.28</td>
<td>16.86</td>
<td>16.85</td>
<td>17.8</td>
<td>9</td>
<td>21.03</td>
<td>21.33</td>
<td>11.25</td>
</tr>
</tbody>
</table>

FMSS: Fresh mass of shoot system, DMSS: Dry mass of shoot system, FMRS: Fresh mass of the root system, DMRS: Dry mass of the root system, FD: Flower diameter, DMF: Dry mass of the flowers, SD: Stem diameter, PH: Plant height. *: Significant at 5% probability. NS: Not significant
Fig. 4. Plant height variation (PH) in response to different irrigation depths in the production of chrysanthemum ‘Puritan’ in pots, conducted in greenhouse, Colatina / ES, 2018

Fig. 5. Variation of stem diameter (SD) in response to different irrigation depths in the production of chrysanthemum ‘Puritan’ in pots, conducted in greenhouse, Colatina / ES, 2018

(A) (B)

Fig. 6. Variation of the fresh mass of shoot system (FMSS) (A) and dry mass of the shoot system (DMSS) (B) of chrysanthemum ‘Puritan’ cultivated in pots, conducted in greenhouse, in response to different irrigation depths, Colatina / ES, 2018
About the root system in relation to the applied depths, both fresh and dry mass of the root system showed adjusted linear regression models, with determination coefficients (R^2) of 0.93 and 0.86, respectively (Fig. 7A; Fig. 7B).

Based on the models, it was observed that the highest estimated dry mass of the root system gain was found when 175% of the daily ETc was restored, presenting a 2.25 g weight in the root system. This represents a 30.50% increase when 100% of the total daily ETc is replaced and 62.76% when half of the evapotranspired depth is replaced by the crop (50% ETc).

The increasing linear behavior in both the fresh and dry masses of the root system shows that these factors are influenced positively by the increase of irrigation, as well as, it also shows that there was no restriction of the root development due to the cultivation in pots, by the restricted volume of substrate contained in them, which could lead to less development of both root and the shoot system, as Pinto et al. [21], pointed out.

Possibly, the inferior irrigation depths did not meet the physiological needs of the plants, causing water stress, which justifies the low growth and development. Spadeto [22], studying the development and production of chrysanthemum submitted it to different levels of water deficit in the soil, observed that there was a considerable decrease in height and dry mass of plants with increased water deficit, reaching the highest absolute growth rate when there was no water deficit. According to Taiz et al. [23], when plants are submitted to water deficit, cell dehydration occurs and that directly affects several basic physiological processes, causing reduction of cell and leaf expansion, photosynthetic inhibition, abscission and leaf death. These factors are undesirable in the commercial production of flowers, as they directly affect the plants of chrysanthemums, reducing the quality demanded by the market.

The flowers also presented positive responses with the increase of the applied depths. An increasing linear behavior for the diameter, fresh and dry matter of the flowers was observed, presenting R^2 of 0.94, 0.95 and 0.92, respectively (Fig. 8).

The flowers showed better development in the larger depths, with the highest result, among those studied, in the replacement of 175% of the daily ETc, reaching 55.3 g of fresh mass (Fig. 8A), 5.76 g of dry mass (Fig. 8B) and 6.9 cm in diameter of flowers (Fig. 8C). That is, the flowers grew 34.9% in dry weight and 16.95% in diameter in relation to the 100% replacement of ETc. In addition, the flowers showed greater uniformity of opening, which is favorable and increases the quality gain of the plants to be commercialized.

Analyzing the fresh and dry mass responses of the flower buds, it is worth to highlight the increasing development in their fresh mass, cause of the water mass present in them, with the increase of the applied depths, which corroborates with the higher water demand noticed by Pereira et al. [18], in flowering.

Considering the results obtained, being the city of Colatina-ES a region that presents high temperatures, it is suggested that new studies be done in different climatic conditions and with daily water supplies in a parcelled way.

Fig. 7. Variation of fresh mass of the root system (FMRS) (A) and dry mass of the root system (DMRS) (B) of chrysanthemum ‘Puritan’ grown in pots, conducted in greenhouses, in response to different irrigation depths, Colatina / ES, 2018
Fig. 8. Variation of fresh mass of the flowers (FMF) (A), dry mass of the flowers (DMF) (B) and diameter of flowers (DF) (C) of chrysanthemum ‘Puritan’ grown in pots, conducted in greenhouses, in response to different irrigation depths, Colatina / ES, 2018

4. CONCLUSION

Irrigation management with daily replacements of 175% of the crop evapotranspiration, corresponding to a daily average irrigation depth of 12.25 mm, showed the best results for all evaluated morphological parameters under the conditions of this study, that is primordial for the increase of the chrysanthemums quality.

ACKNOWLEDGEMENTS

The authors thank Instituto Federal do Espírito Santo (IFES) for the support and the Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES) for the financial support and scholarships awarded.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

© 2019 Posse et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/46531