Nematicidal Properties of *Moringa oleifera*, *Chromolaena odorata* and *Panicum maximum* and their Control Effects on Pathogenic Nematodes of Yam

Anthony A. Mainoo¹* and Ben K. Banful²

¹Adventist Development and Relief Agency (ADRA Ghana), P.O.Box 1435, Accra, Ghana.
²Faculty of Agriculture, Kwame Nkrumah University of Science and Technology, University Post Office, Private Mailbag, Kumasi, Ghana.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JEAI/2019/v31i230066

Received 21 November 2018
Accepted 24 January 2019
Published 22 February 2019

ABSTRACT

A field study was conducted at Atonsu, Sekyere Central District, Ghana from 2013 to 2014, to (i) determine the effects of *Moringa oleifera*, *Chromolaena odorata* and *Panicum maximum* as ex-situ mulches, on soil nematodes population after two years of yam cropping and (ii) assess the effects of the soil nematodes on the yield and physical tuber quality of yam. The field experiment was a 3x3 factorial arrangement in a randomized complete block design with three replications. The first factor was ex-situ mulch types at three levels; *Panicum maximum* (farmers’ choice), *Chromolaena odorata* and *Moringa oleifera*. The second factor was natural fallow aged systems at three levels: 3, 5, and 7 years old. Data collected included nematode population changes, total tuber yield of yam and tuber physical quality assessment. Generally, *Meloidogyne* spp., *Pratylenchus* spp., and *Scutellonema* spp. were the nematode genera identified. However, *Scutellonema* spp. was found to be the most pathogenic nematode affecting yam tuber yield and physical quality. *Chromolaena* and *Moringa* mulches suppressed *Scutellonema* spp. populations by 80.7% and 76.2% respectively as

*Corresponding author: E-mail: mainooatony@gmail.com;
compared to the *Panicum maximum* mulch. The suppressed *Scutellonema* spp. population significantly contributed to higher tuber yields and good tuber physical quality under the *M. oleifera* and *C. odorata* mulches in comparison to the *P. maximum* mulch.

Keywords: Nematodes populations; yam; tuber physical quality; ex-situ mulches; tuber yield.

1. INTRODUCTION

Across West and Central Africa, yam plays key roles in the economy, food and livelihoods [1]. For instance in Nigeria, yam contributes 12% to the Agricultural Gross Domestic Product (AGDP) [2] with about sixty million people depending on it for food and livelihood. In Ghana, yam’s contribution to the AGDP is 16 percent [3,4] and serves as a famine reserve- and cash-crop for poor resource farmers [5].

In world export trade, Ghana, Costa Rica and USA are the three largest exporters of yam accounting for about 70% of global trade [6]. It has been estimated that an average of over 25% of the yield of yam is lost annually due to diseases and pest, particularly nematodes [7]. These nematodes cause not only a reduction in yam yields but also a profound physical damage to yam tubers thereby rendering them unappealing to consumers and subsequently commanding a very low market value [8]. Earlier reports indicate that yam tubers are significantly damaged by three major nematode species, and genera, namely, *Scutellonema* spp., *Meloidogyne* spp. and *Pratylenchus coffeae* [9,10,11,12,13]. These nematode genera are predominant in West and Central Africa and therefore have profound influence on yam tuber yields and physical quality [14]. For instance, *Scutellonema* spp. damage is characterized by the rotting of the tuber to depths of about 2 cm into the tuber [15,16]. Bridge et al. [17] reported that *Scutellonema* spp. is very difficult to control because a wide range of other crops and some weeds support its populations. In spite of this drawback, the control of *Scutellonema* spp. is essential to the improvement of yam yields and its subsequent tuber physical quality. There are reports to suggest that the leaves of *M. oleifera* and *C. odorata* possess nematicidal properties for the control of *M. incognita* and *M. javanica* in eggplant and cowpea production resulting in their increased yields [18,19]. However there is a dearth of such information on other pathogenic nematodes and on other crops.

The objectives of the present study therefore were to (i) determine the effects of *Moringa oleifera*, *Chromolaena odorata* and *Panicum maximum* as ex-situ mulches, on soil nematodes population after two years of yam cropping and (ii) assess the effects of the soil nematodes on the yield and physical tuber quality of the yam.

2. MATERIALS AND METHODS

2.1 Experimental Locations, Design and Procedure

The study was carried out at Atonsu village which had a good representation of all the three natural fallow ages: 3, 5 and 7 year that would be used. The 3 and 5 years old natural fallows were previously cropped to cowpea and cassava, respectively, whiles the 7 year old natural fallow was previously cropped to cocoyam.

The experimental design was a 3 x 3 factorial arrangement in randomized complete block with three replications. The first factor was natural fallow age at three levels, namely, 3, 5 and 7 year. The second factor was mulch type at three levels comprising, *Chromolaena odorata* mulch (leaf residues), *Moringa oleifera* mulch and *Panicum maximum* mulch (control -farmer practice). The plot size within each natural fallow age system was 5 m x 4 m with an experimental area of 2,000 m² (50 m x 40 m).

The experimental location is within longitude 0.05° and 1.30° W and Latitudes 6.55° and 7.30° N and falls within the Forest-Savannah-Transition Ecozone of Ghana. The area is characterized by bimodal rainfall pattern with the major season starting from March to middle of July and the minor starting from mid-August to November. Maximum Environmental temperatures during the two year experimental period ranged between 28.0°C and 33.0°C whiles the monthly rainfall during the two cropping seasons ranged between 28.8 and 290.4 mm. Chromic Lixisols were the most extensive in the study area.

Preparation of ridges, plots demarcation and all other cultural practices were done in accordance with the methodology of [4]. The inter-ridge
Mainoo and Banful; JEAI, 31(2): 1-7, 2019; Article no. JEAI.46923

Spacing was 1 m whiles the inter-plot spacing was 3 m.

Yam (Dioscorea rotundata var. Puna) setts with uniform size and a mean weight of 250 g were planted on the ridges at a spacing of 1 m x 0.5 m. There were 36 plants per plot (18,000 plants ha\(^{-1}\)). Twocroppings were done over the study period, namely, in 2013 and in 2014.

All three mulch types were applied at a rate of 0.5 kg plant\(^{-1}\) (10 t ha\(^{-1}\)) in both years of cropping. There were two applications of each mulch type during each cropping period. The first application was done 28 days after planting of yam whiles the second was done 75 days after planting [20].

Data collected included, nutrient content of mulches, soil nematodes populations, yam tuber yield and tuber physical quality.

2.2 Data Analysis

Data were subjected to analysis of variance using GENTST version 10. Treatment means were separated using Tukey's Honestly Significant Difference (HSD) at 5% level of probability.

3. RESULTS

3.1 Nutrient Content of Leaves and Stems of the Three Mulches

Among the three mulches, M. oleifera leaf residues had significantly (p<0.05) greater contents of nitrogen, phosphorus, potassium, calcium and magnesium than C. odorata and P. maximum (Table 1). C. odorata leaves also had significantly higher contents of all the nutrients studied than P. maximum. The nutrient composition of the leaf residues were therefore found to be in the order: M. oleifera > C. odorata > P. maximum.

Generally, there were higher contents of nitrogen and calcium in the leaves than in the stems except for potassium, which had higher content in the stems than in the leaves for all the mulches (Table 1). The C/N ratios of the leaf residues of C. odorata, M. oleifera and P. maximum were 18.73:1, 8.38:1, and 43.12:1, respectively. For the stems, the C/N ratios ranged from 59.54 to 80.52.

3.2 Effects of Three Mulches on Soil Nematodes Populations

3.2.1 Initial soil nematodes populations

Soil nematode genera initially found in the soil were Meloidogyne spp., Scutellonema spp., Pratylenchus spp., Rotylenchus spp., Helicotylenchus spp., and Tylenchus spp.

Significant differences were observed between the fallow ages for populations of Meloidogyne spp., Scutellonema spp., and Rotylenchus spp. (Table 2). The 3-year fallow system recorded the highest population for Scutellonema spp. and the least for Meloidogyne spp., and Rotylenchus spp. Contrarily, the 5-year fallow system recorded the highest population for Meloidogyne spp., and the least for Scutellonema spp. For the 7-year fallow system, the highest population was found in Rotylenchus spp., and the least in Scutellonema spp. There were no significant differences in the populations of Pratylenchus spp. Helicotylenchus spp. and Tylenchus spp. for all three fallow aged systems.

3.3 Changes in Soil Nematode Population after Mulching

There were significant increases in the population of Meloidogyne spp. under all three mulches, two years after application and cropping. The population increases in comparison to the initial were 223.2 %, 421.5% and 270.0 % for P. maximum, C. odorata and M. oleifera, respectively (Table 3). As regards, Scutellonema spp., population increase was only found under P. maximum, about 406.0%. Under both C. odorata and M. oleifera mulches, however, no significant differences were found in the populations of Scutellonema spp. when the populations after two years was compared to the initial. There were no significant differences between the initial and two years populations of Pratylenchus spp. and Rotylenchus spp.

3.4 Tuber Physical Damage due to Nematodes

There were no significant fallow ages x mulch type interactions for tuber physical damage due to nematodes. Similarly, there were no significant differences between the mulches for nematode-related tuber physical damage. Furthermore, there were no significant differences between the fallow aged systems for nematode-related tuber physical damage. Generally, tuber damage ranged between 0.29 % and 1.38 %.
Table 1. Nutrient contents of leaves and stems of *P. maximum*, *C. odorata* and *M. oleifera* used in the study [21]

<table>
<thead>
<tr>
<th>Mulch type</th>
<th>%N</th>
<th>%P</th>
<th>%K</th>
<th>%Ca</th>
<th>%Mg</th>
<th>C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. maximum</td>
<td>0.90c</td>
<td>0.13c</td>
<td>2.00c</td>
<td>0.29c</td>
<td>0.26c</td>
<td>43.12:1</td>
</tr>
<tr>
<td>C. odorata</td>
<td>1.60b</td>
<td>0.24b</td>
<td>2.52b</td>
<td>0.44b</td>
<td>0.50b</td>
<td>18.73:1</td>
</tr>
<tr>
<td>M. oleifera</td>
<td>3.87a</td>
<td>0.29a</td>
<td>2.88a</td>
<td>0.50a</td>
<td>0.59a</td>
<td>8.38:1</td>
</tr>
<tr>
<td>HSD (0.05)</td>
<td>0.039</td>
<td>0.023</td>
<td>0.138</td>
<td>0.054</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>Stems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. maximum</td>
<td>0.56a</td>
<td>0.18ab</td>
<td>3.87a</td>
<td>0.18b</td>
<td>0.26b</td>
<td>69.46:1</td>
</tr>
<tr>
<td>C. odorata</td>
<td>0.50a</td>
<td>0.14b</td>
<td>3.05c</td>
<td>0.23ab</td>
<td>0.24b</td>
<td>80.52:1</td>
</tr>
<tr>
<td>M. oleifera</td>
<td>0.57a</td>
<td>0.22a</td>
<td>3.36b</td>
<td>0.29a</td>
<td>0.31a</td>
<td>59.54:1</td>
</tr>
<tr>
<td>HSD (0.05)</td>
<td>0.087</td>
<td>0.041</td>
<td>0.096</td>
<td>0.076</td>
<td>0.043</td>
<td></td>
</tr>
</tbody>
</table>

Means with the same subscript within a column are not significantly different at p > 0.05

Table 2. Initial soil nematode population in the three natural fallow aged systems

<table>
<thead>
<tr>
<th>Fallow aged system</th>
<th>Meloidogyne spp.</th>
<th>Scutellonema spp.</th>
<th>Rotylenchus spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-year</td>
<td>19.67b</td>
<td>14.33a</td>
<td>2.00b</td>
</tr>
<tr>
<td>5-year</td>
<td>40.33a</td>
<td>1.33b</td>
<td>14.00b</td>
</tr>
<tr>
<td>7-year</td>
<td>29.00a</td>
<td>9.33a</td>
<td>68.00a</td>
</tr>
<tr>
<td>HSD</td>
<td>19.72</td>
<td>7.29</td>
<td>30.10</td>
</tr>
</tbody>
</table>

Means with the same subscript within a column do not differ significantly at p>0.05

3.5 Tuber Yield of Yam

There were no significant fallow aged systems x mulch type interactions for any of the yield components over the two years of cropping. There were however significant differences between the mulches for tuber weight and subsequently tuber yield for both years of cropping. Tuber yield of yam under *M. oleifera* was significantly and consistently greater than those under *C. odorata* and *P. maximum*, (Table 4). The least tuber weight of yam was produced under *P. maximum*. In terms of the fallow aged systems, yam tuber yield was greatest under the 7-year fallow system, significantly heavier than those under 5-year and 3-year fallow systems after the first year of cropping. The least tuber weight was produced by yam under 5-year fallow. However, after the second year of cropping, no significant differences were observed between the fallow aged systems for all the measured yield components.

5. DISCUSSION

Scutellonema spp. population under *P. maximum* significantly increased by 5 folds after two years of mulch application and cropping. Conversely, populations under *M. oleifera* and *C. odorata* mulches, did not change over the same period of application and cropping. The implication was that, in spite of the yam cropping, the *M. oleifera* and *C. odorata* mulches were able to prevent the multiplication of the *Scutellonema* spp., one of the most devastating species which causes considerable damage to yam tubers. These two mulches could therefore be considered as good agents for the biological control of the

Table 3. Effects of application of three mulch types on the populations of *Meloidogyne* spp. and *Scutellonema* spp. across the fallow aged systems

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. maximum</td>
<td>C. odorata</td>
</tr>
<tr>
<td>Initial</td>
<td>29.67b</td>
<td>29.67b</td>
</tr>
<tr>
<td>After two years of mulching</td>
<td>96.00a</td>
<td>154.89a</td>
</tr>
<tr>
<td>HSD (0.05)</td>
<td>58.14</td>
<td>88.77</td>
</tr>
</tbody>
</table>
Table 4. Effects of mulch types and fallow aged systems on total yam tuber yield over two years

<table>
<thead>
<tr>
<th>Mulch type</th>
<th>Mean Tuber wt. (kg)</th>
<th>Total Tuber yield (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. maximum</td>
<td>1.10b</td>
<td>51.3b</td>
</tr>
<tr>
<td>C. odorata</td>
<td>1.25b</td>
<td>56.1b</td>
</tr>
<tr>
<td>M. oleifera</td>
<td>1.50a</td>
<td>70.5a</td>
</tr>
<tr>
<td>HSD (0.05)</td>
<td>0.24</td>
<td>6.62</td>
</tr>
</tbody>
</table>

Fallow age

<table>
<thead>
<tr>
<th></th>
<th>Mean Tuber wt. (kg)</th>
<th>Total Tuber yield (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-year</td>
<td>1.25b</td>
<td>31.38b</td>
</tr>
<tr>
<td>5-year</td>
<td>1.02b</td>
<td>30.35b</td>
</tr>
<tr>
<td>7-year</td>
<td>1.83a</td>
<td>43.16a</td>
</tr>
<tr>
<td>HSD (0.05)</td>
<td>0.45</td>
<td>10.48</td>
</tr>
</tbody>
</table>

Means with the same subscript within a column do not differ significantly (p>0.05)

Scutellonema spp. nematode. This is the first report of the nematicidal properties of *M. oleifera* in the control of *Scutellonema* spp. For *C. odorata*, the present study corroborates the findings of earlier studies which indicated that the direct application of *C. odorata* either as mulch or as in natural fallows, reduced the population of *Scutellonema* spp. [22,23,24]. The mechanism of control has been explained by the single or combined action of alkaloids, flavonoids, saponins, amides and ketones which are produced during decomposition of the candidate mulch material [25,26,27,28]. Many researchers [23] and [29] have in separate reports indicated that *C. odorata* possessed alkaloids, flavonoids and the other phytochemicals that conferred nematicidal properties on it. In addition, [30] and [31] had indicated that the saponins and tannins in *C. odorata* were responsible for the inhibition of the egg hatching ability of such nematodes. In addition, when the C: N ratio of the amendment is less than 20:1, more effect on nematodes is evident [32]. In the present study, *C.odorata, M. oleifera* mulches have C/N ratios less than 20:1, whereas *P. maximum* has C/N ratio more than 20:1 which explained more effect of the former mulches than the later mulch (*Panicum*). This result agreed with [33]. These positive nematicidal attributes of *M. oleifera* and *C. odorata* could partly be responsible for the heavier weighted yam tubers under them as compared to the *P. maximum* mulch. Also contributing to the good yields observed under *M. oleifera* and *C. odorata* were the high nutrient status of the leaves which most probably were released through decomposition, in synchrony with tuberization of the yam. The findings of the present study supports the report of [34] who indicated that tuber yield of yam under *C. odorata* mulch was significantly greater than that under *P. maximum*. The 7 year fallow, which had significantly higher tuber yield (43.16t/ha) than the 5 year, (30.35t/ha and the 3-year (31.38t/ha) during the initial harvest, could be attributed to the significantly higher inherent nutrient status of the 7 year fallow. There was an initial significantly higher organic matter (O.M) content of 2.22% in the 7 year fallow than both the 5 year (O.M. content of 1.84%) and the 3 year fallow (O.M. content of 1.49%). The length of cropping and fallow periods depends on the inherent soil fertility and available nutrient amendments and these reflect in the yields from fallowed plots [35].

6. CONCLUSION

After two years of application and cropping, the ex-situ mulches, *C. odorata* and *M. oleifera* suppressed *Scutellonema* populations by 80.7% and 76.2% respectively as compared to the control mulch (*Panicum*). The suppressive effects of these mulches on *Scutellonema* spp. partly contributed to the significantly higher tuber yield sustenance of *M. oleifera* and *C. odorata* mulches as compared to *P. maximum* as well as to the very minimal (less than 2%) tuber physical damage observed. Both *Moringa* and *Chromolaena* could therefore be exploited for cultural management and suppression of the *Scutellonema* spp. through their use as mulch.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

